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Abstract

It is argued that the Plio-Quaternary deformation pattern in the Mediterranean region is compatible with a SSW-
NNE convergence between Africa (Nubia) and Eurasia and that the significant difference between this kinemat-
ics and the one provided by global models (SSE-NNW convergence e.g., the NUVEL-1) may be due to the fact
that those models interpret North Atlantic data by adopting an oversimplified two-plate configuration, which
cannot account for the occurrence of significant seismotectonic activity inside the presumed Nubia and Eurasia
blocks. It is shown that the adoption of a new plate configuration involving the Iberia and Morocco microplates,
strongly suggested by geological and seismotectonic evidence, makes it possible to identify a kinematic model
compatible within errors with the constraints recognized in the Mediterranean region and with the NUVEL-1
North Atlantic data set. Some considerations are made about why the present-day Nubia-Eurasia kinematic mod-
els inferred from geodetic observations are significantly different from long-term models, such as model NUV-
EL-1 and the one proposed in this work.
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mechanism. In a number of papers (Mantovani
et al., 1997, 2001a, 2002, 2006a,b; Babbucci
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2005) we argue that the best agreement be-
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basin generation, lithosphere subduction, arc A significantly different Nubia-Eurasia mo-
migration and orogenic accretion (e.g., Sengor tion trend (NNW to NW ward) is suggested by
and Yilmaz, 1981; Dercourt et al., 1986; Finet- global kinematic models which have been in-
ti, 2005). The features of major observed tec- ferred from North Atlantic evidence (e.g., Min-
tonic events, such as the strain involved, loca- ster and Jordan, 1978; Argus et al., 1989; De

Mets et al., 1990, 1994), and by the kinematic
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In this work we present some considerations
on the possible causes of such differences and
propose a new kinematic model which is com-
patible with Mediterranean evidence and the
NUVEL-1 North Atlantic data set. In Section 2,
we describe the most significant tectonic fea-
tures in the Eastern, Central and Western
Mediterranean area, which in our opinion may
be used as major constraints on the Nubia-Eura-
sia relative motion. Section 3 points out major
seismotectonic evidence in the western part of
the study area that suggests the presence of two
independent microplates, Iberia and Morocco.
In Section 4, we describe the proposed kine-
matic model and the constraints that have been
used. In Section 5, we make some remarks
about the uncertainties that might affect the Nu-
bia-Eurasia Euler poles inferred from the
presently available geodetic data.

2. Mediterranean constraints on the Plio-
Quaternary Nubia-Eurasia kinematics

The most direct information on the relative
motion between two plates is provided by the
analysis of the deformation pattern observed at
their boundary zone, that in the case of Nubia
and Eurasia corresponds to the Mediterranean
area (fig. 1). A detailed description of the avail-
able evidence in that region and a discussion
about its possible geodynamic implications are
given by Mantovani et al. (1997, 2002, 2006a)
and Mantovani (2005). In this section, we point
out some major aspects of the Pliocene-Quater-
nary Mediterranean deformation pattern which
may lead to define quantitative constraints on
the average Nubia-Eurasia relative motion dur-
ing that period.

2.1. Eastern Mediterranean

It is widely recognized that during the
Pliocene and Quaternary the northern oceanic
margin of Nubia, the Ionian-Levantine Neo-
tethys domain, has subducted under the Anato-
lian-Aegean system, which has extruded W to
SW-ward with respect to Eurasia in response to
the indentation of the Arabian promontory (e.g.,
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McKenzie, 1978; Dewey and Sengor, 1979;
Robertson, 2000; Aksu et al., 2005). The relat-
ed consuming boundary (fig. 1) is formed by
thrust fronts oriented SE-NW, such as the Hel-
lenic and Pytheus-Cyprus trenches, and left-lat-
eral transpressive fault systems trending SW-
NE, such as the Pliny-Strabo in the Aegean Arc
and the Tartus-Latakia, Larnaka-Amanos and
Kyrenia-Misis ones in the Cyprus Arc (e.g., Le
Pichon et al., 1981; Kempler and Garfunkel,
1994; Chaumillon and Mascle, 1997; Mascle
and Chaumillon, 1997; Papazachos and Pa-
paioannou, 1999; Robertson, 2000; Vidal et al.,
2000; Hall et al., 2005a,b; Wdowinski et al.,
2006). The orientation of these major tectonic
features indicates that Nubia and the Aegean-
Anatolian system have converged along a
roughly SW-NE to SSW-NNE direction in the
Pliocene and Quaternary, as recognized by sev-
eral authors (e.g., Aksu et al., 2005 and refer-
ences therein).

To understand what implications this evi-
dence may have on the Nubia-Eurasia conver-
gence trend, one should know the coeval kine-
matics of the Anatolian-Aegean system with re-
spect to the same reference frame. As regards
motion trends, most authors agree that in the
Pliocene and Quaternary Anatolia has moved
roughly westward and Aegea roughly SW-ward
with respect to Eurasia (e.g., Le Pichon and An-
gelier, 1979; Hempton, 1987; Barka, 1992;
Armijo et al., 1999, 2003). Analyses of geolog-
ical offsets along the North Anatolian Fault
(NAF) provide values of right-lateral motion
rate ranging between 5 and 10 mm/yr (e.g., Bar-
ka, 1992; Dhont et al., 1998; Hubert-Ferrari
et al., 2002; Polonia et al., 2004). Comparable
values of slip rate (10 mm/yr) are suggested by
the recurrence times of major seismic activa-
tions of the entire NAF (e.g., Barka, 1992,
1996). Estimates of fault offsets at the Eastern
Anatolian fault system (e.g., Cetin et al., 2003)
suggest an average slip rate of 11 mm/yr in the
last 2.5 Myr.

Much higher velocities are indicated by geo-
detic observations, which suggest 15-25 mm/yr
for Anatolia and 30-40 mm/yr for Aegea (e.g.,
McClusky et al., 2000). However, one should be
aware that geodetic velocities are only represen-
tative of present-day plate motions. The fact that
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such motions do not coincide with the long-term
geological ones should not be a surprise, since it
is reasonable to expect significant effects of post-
seismic relaxation in the Anatolian-Aegean zones
after the last strong seismic activation of the
North Anatolian decoupling fault system (e.g.,
Barka et al., 1992, 1996). In particular, one can
presume a progressive migration of maximum
velocities from Eastern Anatolia to the Aegean re-
gion, with a migration rate controlled by the rhe-
ological properties of the structures involved. The
quantification of post-seismic relaxation induced
by the activation of the NAF since the 1939 Erz-
incan earthquake (Mantovani et al., 2001b; Cen-
ni et al., 2002) predicts that at present the Aegean
zone is moving faster than Anatolia, with respec-
tive motion rates that fairly agree with the geodet-
ic velocity field. Another reason to believe that
the geodetic velocity field in the Aegean region is
significantly different from the one which oc-
curred during the Pliocene-Quaternary time is
that such field, almost homogeneous (e.g., Mc-
Clusky et al., 2000; Nyst and Thatcher, 2004),
can hardly account for the occurrence of exten-
sion in the Eastern and Western Cretan basins
(fig. 1), which are the most stretched areas of the
Aegean region (Angelier ef al., 1982; Li et al.,
2003).

On the basis of the arguments mentioned
above, it seems highly probable that in the Plio-
cene-Quaternary the Aegean zone moved SW
ward at a rate comparable to that of Nubia. If so,
the orientation of trenches and strike-slip faults at
the Hellenic boundary zone can hardly be ex-
plained if a coeval Nubia-Eurasia motion trend
significantly different from NE to NNE-ward is
assumed. This conclusion is also suggested by
the Plio-Quaternary evolution of the Cyprus Arc,
in particular by the fact that in such arc tectonic
activity has slowed down considerably since the
Pliocene, after collision of the arc with the Er-
atosthenes continental fragment (e.g., Robertson,
1998; Vidal et al., 2000; Galindo-Zaldivar et al.,
2001). Furthermore, one could note that in the
Cyprus Arc there is no discrepancy between long
and short-term behaviour since geodetic meas-
urements (e.g., Kahle et al, 2000; McClusky
et al., 2000; Wdowinsky et al., 2006) indicate a
convergence rate (9-14 mm/yr) comparable to the
estimated motion rate of Nubia. Thus, assuming
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a NE to NNE ward motion of Nubia during the
Pliocene-Quaternary period seems to be the only
possibility to explain the morphology of the
Cyprus Arc.

2.2. Central Mediterranean

An important constraint on the Nubia-Eura-
sia kinematics can be inferred from the Adria-
Eurasia relative motion, since no significant de-
coupling zone can be recognized between Nubia
and Adria since the late Pliocene/Early Pleis-
tocene (e.g., Babbucci et al., 2004; Mantovani,
2005; Argnani, 2006; Mantovani et al., 2006a).
The fact that the motion of Adria with respect to
Eurasia suggested in the literature (e.g., Ander-
son and Jackson, 1987), involving a roughly
NNE ward motion of the Southern Adriatic re-
gion, is not compatible with the NNW ward mo-
tion of Nubia predicted by the NUVEL-1 mod-
el led a number of authors to look for a decou-
pling zone between Nubia and Adria (e.g., An-
derson and Jackson, 1987; Westaway, 1990;
Console et al., 1993; Favali et al., 1993; Oldow
et al., 2002; Battaglia et al., 2004; Serpelloni
et al., 2005). However, the considerable disper-
sion of the decoupling zones so far proposed,
concerning location (from the Central Adriatic
Sea to Eastern Sicily), trend (from S-N to
WSW-ENE) and tectonic nature (from strike
slip to extensional), underlines the ambiguity of
the respective supporting evidence (Argnani
et al., 2001; Babbucci et al., 2004; Argnani and
Bonazzi, 2005; Argnani, 2006). Significant seis-
motectonic activity is recognized in the Gargano
zone, belonging to the Apulian structural high,
but no evident eastward prosecution of this ac-
tivity is recognized in the Southern Adriatic re-
gion (Argnani, 2006). A similar consideration
has been made for the presence of minor defor-
mation, with folds and reverse faults, in the off-
shore of Central Italy (Argnani and Frugoni,
1997). Strike slip faults possibly associated with
seismicity are recognized south of the Salento
peninsula, but also in this case a Adria-Nubia
decoupling zone can hardly be recognized since
in the Southernmost Adriatic domain Plio-Qua-
ternary sediments are almost undeformed (Ar-
gnani et al., 2001).
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The NNE ward motion trend of southern-
most Adria (e.g., Anderson and Jackson, 1987,
Babbucci et al., 2004) and the lack of decoupling
between Nubia and Adria indicate a motion trend
of Nubia in the Central Mediterranean region
that is consistent with the NNE ward Nubia-
Eurasia convergence suggested by the geometry
of the Hellenic and Cyprus boundary zones. This
Nubia’s kinematics is also quantitatively sup-
ported by the results of numerical modelling
(Mantovani et al., 2001c, 2006b), which show
that the strain field in the central-eastern Medi-
terranean region, deduced from neotectonic and
seismological data, is satisfactorily reproduced
when kinematic boundary conditions are consti-
tuted by a NNE ward motion of Nubia and a
westward motion of Anatolia.

2.3. Western Mediterranean

A significant constraint on the Nubia-Eurasia
relative motion can be inferred from the seismo-
tectonics of the Transmoroccan (or Transalboran)
fault system. Some authors (e.g., Jacobshagen,

1992 and references therein; Andeweg and Cloet-
ingh, 2001) recognize that this fault system de-
velops from the Betic region in Southern Spain to
Agadir in Southern Morocco, crossing the Albo-
ran Sea and the Middle and High Atlas belts (fig.
1). In spite of the fact that this tectonic feature is
composed of many single faults, it is widely rec-
ognized as a continuous sinistral strike-slip de-
coupling zone between Nubia and the Morocco
microplate (e.g., Jacobshagen, 1992; Andeweg
and Cloetingh, 2001).

Detailed investigations on the left-lateral
fault pattern along the Transmoroccan belt (fig.
1) reveal the presence of NNE-SSW to NE-SW
faults crossing the Betic-Alboran-Rif domain
(e.g., Hatzfeld et al., 1993; Medina, 1995; Ait-
Brahim et al., 2002, 2004; Faulkner et al.,
2003; Gracia et al., 2006), NE-SW faults in the
Middle Atlas, locally associated with exten-
sional and compressional features (e.g., Brede,
1992; Bernini et al., 2000, Gomez et al., 1996,
1998) and ENE-WSW trending transpressional
features between the High Atlas and Agadir
(e.g., Brede et al., 1992; Mustaphi et al., 1997;
Sebrier et al., 2006). Present activity along this

Fig. 2. Seismicity distribution in the Western Mediterranean-Atlantic region (M>4.5, 1964-2006) from the database
of the Incorporated Researcher Institutions for Seismology (IRIS), available at <http://www.iris.washington.edu>.
NST=North Spanish Trench; TES=Transmoroccan Fault System.
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major fracture is testified by crustal and sub-
crustal seismicity (e.g., Medina and Cherkaoui,
1991; Deffontaines et al., 1992; Lopez-Casado
et al., 2001; El Alami et al., 2004), as shown in
fig. 2. The existence of a deep decoupling zone
between Nubia and Morocco is also suggested by
the presence throughout the Atlas belt of abun-
dant Pliocene-Quaternary alkaline basaltic vol-
canism (e.g., Harmand and Moukadiri, 1986; El
Azzab and Wartiti, 1998; Piqué et al., 1998; El
Azzouzi et al., 1999).

Some authors (e.g., Anguita and Hernan,
1975, 2000; Brede et al., 1992; Mezcua et al.,
1992), on the basis of geological, seismological
and volcanological evidence, suggest that the
Transmoroccan fault system further propagates
West to SW ward through the Canary islands,
up to longitude 25°W in the Canary basin close
to the Hierro and Atlantis mid-Atlantic fracture
zones reported by Banda et al. (1992) and
Ranero et al. (1997).

The occurrence of a major active deep frac-
ture, like the Transmoroccan one, raises an im-
portant problem for global kinematic models,
since it is not compatible with the two-plate con-
figuration adopted by those models. Attempts at
reconciling the left-lateral shear observed at that
fault system with the NW ward Nubia-Eurasia
convergence trend predicted by the NUVEL-1
model (e.g., Piqué et al., 1998; Bernini et al.,
2000; Andeweg and Cloetingh, 2001) suggest
that this feature is due to the west to SW ward
extrusion of the Morocco microplate with re-
spect to Eurasia. However, this explanation pres-
ents obscure aspects, mainly related to the fact
that the active boundaries of the invoked Moroc-
co block are not defined. For instance, the pro-
posed kinematics of this microplate would re-
quire shortening somewhere in the adjacent At-
lantic zone, which is not recognized. In addition,
the presumed westward motion of the Morocco
block with respect to Eurasia is not compatible
with the NW to NNW ward relative motion be-
tween the Moroccan offshore zone and Eurasia,
indicated by the structural and seismotectonic
features of the Gorringe thrust zone (fig. 1). The
above hypothesis about the kinematics of the
Morocco microplate could be influenced by an-
other contemporaneous tectonic process which is
taking place in that zone, i.e. the westward es-
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cape of the Betic-Rif orogenic wedge with re-
spect to the surrounding regions (fig. 1). Howev-
er, this small orogenic wedge, characterized by
well recognized active boundaries and only in-
volving shallow structures (e.g., Rebai et al.,
1992; Buforn et al., 1995; Meghraoui et al.,
1996, Maldonado et al., 1999), should not be
confused with the much larger Morocco mi-
croplate. On the other hand, a relative motion be-
tween the Betic-Rif wedge and the Morocco mi-
croplate is well documented by the compression-
al deformation recognized at the border between
these two blocks (e.g., Moratti et al., 2003; Bar-
gach et al., 2004; Medialdea et al., 2004).

The Mediterranean evidence described in
this section and the arguments reported by Man-
tovani et al. (1997, 2002, 2006a) and Mantovani
(2005) suggest that in the last few million years
Nubia and Eurasia have undergone a SSW-NNE
convergence. A similar kinematics is suggested
by other authors (e.g., Dercourt et al., 1986; Ce-
tin et al., 2003; Hall er al., 2005a; Aksu et al.,
2005 and references therein).

3. Iberia and Morocco microplates

In our opinion, the fact that the analysis of
North Atlantic data led to a Nubia-Eurasia con-
vergence trend (NNW ward, see e.g., De Mets
et al., 1990) significantly different from the one
suggested by the Mediterranean evidence (NNE
ward) is due to the oversimplified two-plates con-
figuration adopted by the NUVEL-1 approach.
This hypothesis is suggested by the occurrence of
seismotectonic activity in some zones lying in-
side the Africa and Eurasia blocks adopted by
DeMets et al. (1990), such as the Pyrenees, West-
ern Iberia, Morocco and the adjacent Atlantic re-
gion (fig. 2). In particular, we argue that seismo-
tectonic evidence in the Western Mediterranean
suggests the presence of at least two major inter-
vening microplates, Morocco and Iberia (fig. 3).

The Morocco (MOR) microplate is delimited
by the Azores-Gibraltar tectonic belt, the Canary-
Transmoroccan fault system, and by the sector of
the Mid Atlantic Ridge running from Azores to
the Atlantis fracture zone (fig. 3). The decoupling
of this microplate from Nubia is accommodated
by overall sinistral strike-slip motion at the Ca-
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Fig. 3. Geometry of the Iberia and Morocco microplates (shaded areas) and the respective boundaries zones
with respect to Nubia and Eurasia. Thick and dashed lines indicate seismically active and presumed plate bound-
aries, respectively. The stippled zone identifies the Betic-Rif orogenic wedge (extruding westward, as indicated
by the empty arrow). Black stars indicate Pliocene-Quaternary alkaline-basaltic volcanism (see text for refer-
ences). The strain regimes recognized at the various plate boundaries (see table Ila-i) are indicated by converg-
ing, diverging and anti-parallel arrows, respectively. Symbols and abbreviations as in fig. 1.

nary-Transalboran fault system, locally transten-
sional or transpressional as discussed in Section
2. The tentative westward prosecution of this
fault system to the Mid Atlantic transform zones,
such the Atlantis one, is suggested by the spatial
distribution of seismicity (e.g., Wysession ef al.,
1995 and fig. 2). The decoupling between MOR
and Eurasia is accommodated by tectonic activi-
ty at the Azores-Gibraltar tectonic belt, NE-SW
lengthening at the Terceira ridge, dextral strike-
slip at the Gloria fault and roughly NNW-SSE
thrusting at the Gorringe zone (e.g., Buforn et al.,
1988, 2004; Kiratzi and Papazachos, 1995; Morel
and Meghraoui, 1996; Hayward et al, 1999).
Roughly E-W lengthening occurs along the sec-
tor of the Mid Atlantic Ridge, which forms the
boundary between MOR and North America
(e.g., DeMets et al., 1990 and references therein).
Seismic activity (Lynnes and Ruff, 1985; Buforn
et al., 1988) suggests that some dextral strike-slip
deformation occurs within MOR, along a NNW-

347

SSE belt running from the Gloria Fault to Agadir
(figs. 2 and 3).

The relative motion between the Iberia (IBE)
microplate and Eurasia is accommodated by
roughly N-S shortening, accompanied by minor
sinistral strike-slip, at the Pyrenean belt (e.g.,
Grellet et al., 1993; Goula et al., 1999; Pauchet
et al., 1999; Mauffret et al., 2001; Alasset and
Meghraoui, 2005), and by sinistral shear at the
NNE-SSW trending fault system (WIFS in fig. 3)
recognized in the Portugal region (e.g., Cabral,
1989; Ribeiro et al., 1996; Jabaloy et al., 2002;
Vilanova and Fonseca, 2004; Martinez-Diaz
et al., 2006). Both the above borders are affected
by significant seismic activity (Souriau and
Pauchet, 1998; Souriau et al., 2001; Borges et al.,
2001).

The oblique convergence between IBE and
Nubia is accommodated by overall NNW-SSE to
NW-SE shortening in a relatively large and com-
plex deforming zone (fig. 3), including the Betic-
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Rif orogenic belt, the Alboran zone, the Balearic
promontory and the Maghrebian belt in Northern
Algeria (e.g., Meghraoui et al., 1986, 1996; Re-
bai et al., 1992; Buforn et al., 1995, 2004; Morel
and Meghraoui, 1996; Stich et al., 2003, 2006;
Yelles-Chaouche et al., 2006). The westward ex-
trusion of the Betic-Rif wedge is one of the ef-
fects of the IBE-Nubia convergence. The relative
motion between IBE and that wedge is accom-
modated by ENE-WSW dextral transpressional
faults in Southern Spain, such as the Cadiz-Cre-
villente-Alicante, one (e.g., Buforn ef al., 1995;
Alfaro et al., 2002; Gracia et al., 2006). The de-
coupling of the Betic-Rif wedge from Nubia is
allowed by NNE-SSW to NE-SW sinistral strike-
slip and trans-tensional faults in the Alboran Sea
and southeastern Spain, such as the Alhama de
Murcia-Palomares-Carboneras system, almost
aligned with the Transmoroccan fault system
(Andeweg and Cloetingh, 2001; Faulkner et al.,
2003; Stich et al., 2003, 2006; Gracia et al.,
2006). The above sinistral shear zone could con-
tinue in the Eastern Rif, where seismically active
features such the Nekor Fault (e.g., Hatzfeld
et al., 1993; Medina, 1995; Ait Brahim et al.,
2004) are recognized. The roughly E-W exten-
sion, recognised from southeastern Spain to east-
ern Rif through the Alboran Sea (e.g., Buforn
et al., 1995, 2004; Medina, 1995; Ait Brahim
et al., 2002; Martinez-Martinez et al., 2006; Re-
icherter and Peters, 2005; Gracia et al., 2006)
most probably occurs in the wake of the extrud-
ing Betic-Rif wedge. The compressional fronts
recognized in the Atlantic offshore of Gibraltar,
at the western border of the Betic-Rif wedge
(e.g., Maldonado et al., 1999; Moratti et al.,
2003; Bargach et al., 2004; Medialdea et al.,
2004; Gutscher et al., 2006; Thiebot and Gutsch-
er, 2006) mark the zone where this wedge over-
thrusts the Morocco microplate.

4. Proposed kinematic model

To define the new kinematic model for the
Mediterranean Nubia-Eurasia boundary zone
we assume a plate configuration (fig. 4) that in-
volves three major blocks, Nubia, Arabia and
Eurasia, and two microplates, MOR and IBE,
as discussed in the previous section. The Anato-
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lian-Aegean and the Rif-Betic systems are con-
sidered as extruding orogenic wedges rather
than rigid blocks, in line with the interpretation
of other authors (e.g., Maldonado et al., 1999;
Piper and Perissoratis, 2003; Piper et al., 2006).
As discussed earlier, the Adriatic promontory is
assumed as connected with Nubia.

Eurasia is taken as a rigid and unique plate in
spite of the occurrence of seismotectonic activity
in France and the Rhine-Rhone graben system
(e.g., Sebrier et al., 1997). We assume that this
intraplate deformation is mainly due to the inden-
tation of the Adriatic promontory, as suggested
by some authors (e.g., Dezes et al., 2004 and ref-
erences therein). In particular, the push of Adria
in the Eastern Alps (fig. 4) is compatible with the
sinistral transtension and NE-SW extension ob-
served at the Upper and Lower Rhine Graben
systems respectively (e.g., Plenefisch and Bonjer,
1997; Hinzen, 2003) and with the active NW-SE
compression in the eastern Swiss Alps and the
Jura belt (e.g., Niviere and Winter, 2000; Persaud
and Pfiffner, 2004). This driving mechanism,
combined with the push of Iberia, could be also
responsible for the compressional regime which
affects several zones of France, evidenced by a
considerable uplift rate (1-2 mm/yr) of the Mas-
sif Central, and the seismotectonic activity of
several transcurrent and reverse faults from Brit-
tany to Aquitaine (e.g., Grellet et al., 1993; Dezes
et al., 2004; Mazabraud et al., 2005).

The occurrence of significant intraplate de-
formation in Central Europe and the fact that
the relatively complex distribution of strain
styles in this zone is consistent with the effects
expected from the indentation of the Adriatic
promontory could provide further support to the
hypothesis that Adria moves in connection with
Nubia. If the Northern Adriatic domain were
decoupled from the Southern Adriatic/Nubia
system and were moving very slowly, as sug-
gested by some authors (e.g., Westaway, 1990;
Oldow et al., 2002), it would be quite problem-
atic explaining the occurrence of seismotecton-
ic activity in such a broad region, lying just in
front of the Adriatic promontory.

At the Hellenic and Cyprus arcs, Nubia in-
teracts with the Anatolian-Aegean system.
Along the Dinarides, Adria interacts with the
Carpatho-Pannonian region, which is still char-
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acterized by considerable deformation. Further
east, Nubia interacts with the Arabia plate along
the mid-ocean-like Red Sea Ridge and the Dead
Sea Transform Fault Zone.

Taking into account the plate configuration
mentioned above (fig. 4), we looked for the set of
Euler poles (table I) which satisfactorily account
for the observed features at the various plate bor-
ders (table Ila-1), by inverting the available kine-
matic indicators in a weighted least-square ap-
proach (De Mets et al., 1990). The constraints
considered in this search are represented by
spreading rates (Mid Atlantic Ridge and Red
Sea), transform fault azimuths (Mid Atlantic
Ridge and Gloria Fault) and relative plate veloc-
ity vectors (all other boundaries). Velocity vec-
tors have been obtained from seismic moment
tensor summation, structural analysis of neotec-
tonic faults and numerical modelling of recent/
present deformation patterns observed at plate
borders (table Ila-i). Given the relatively large
uncertainty which may affect the results of these
last estimates (e.g., Argus et al., 1989; Marret
and Allmendinger, 1990; Viti et al., 2001), we
have assigned a relatively large error level (10°-
20° and 1.5-4 mm/yr, respectively) to azimuth
and rate of velocity vectors.

Kinematic indicators along the Mid Atlantic
Ridge, which form the boundary between North
America and the Eurasia, Morocco and Nubia
blocks are taken from the NUVEL-1 database
(DeMets et al., 1990). From the same source al-
so come the kinematic constraints assumed at

the Gloria Fault, which in our plate configura-
tion is a sector of the MOR-Eurasia boundary.
The western and eastern part of that boundary,
i.e. the Terceira rift and the Gorringe thrust
zone are instead constrained by seismotectonic
velocity vectors (table Ile). The relative motion
at the MOR-Nubia boundary is constrained by
6 velocity vectors, two located offshore (Ca-
nary Basin and Canary Islands) and four along
the long NE-SW Transmoroccan tectonic belt
(Agadir, Tizi n’Test Fault, High Atlas and Mid-
dle Atlas). Since these vectors are inferred from
the geometrical pattern of faults, folds and
joints, only the azimuth of the relative plate mo-
tion is defined (table IIg). The relative motion at
the IBE-Eurasia boundary is tentatively con-
strained by two velocity vectors derived from
neotectonic faulting, one located in the Western
Iberian fault system and the other in the Pyre-
nean orogenic belt (fig. 3). Along the Nubia-
IBE boundary, we use one velocity vector, rep-
resentative of the shortening axis recognized in
the wide collision zone from Southern Spain to
the Algerian Maghrebian belt.

As discussed in Section 2, we think that a sig-
nificant constraint on the Nubia-Eurasia relative
motion can be deduced from the motion of Adria,
that we take as a promontory of Nubia. The con-
straints we adopt in this zone are represented by
two velocity vectors, located in the northern and
southern parts of Adria (fig. 4 and table IIf),
which are taken from the velocity field derived by
numerical experiments (Mantovani et al., 2001c).

Table I. Relative Euler poles (latitude, longitude and angular velocity) of the plates shown in fig. 4, obtained
by inverting the kinematic indicators reported in table Ila-i. ARA = Arabia; EUR = Eurasia; IBE = Iberia; MOR=
= Morocco; NAM = North America; NUB = Nubia. See text for explanations.

EUR NAM NUB MOR ARA
Lat Long w Lat Long w Lat Long w Lat Long w Lat Long w
© ¢ CMay ) ) CMa) () ) CMa () () Ma) () () (°*Ma)
NAM 62.4 135.8-0.200
NUB 36.2 -18.0 0.100 80.2 75.4 0.240
MOR 285 -21.0 0.123 79.6 369 0.240 -0.8 -29.70.028
ARA 344 18.0 0.500 50.5 30.5 0595 325 25.8 0.416 33.7 29.7 0.403
IBE 435 -14.2 0.074 76.8 105.6 0.234 -16.5154.50.029 -8.0 152.4 0.056 -32.2 -157.5 0.435
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Table Ila-i. Mediterranean and North Atlantic constraints (ridge spreading rates, transform fault azimuths and
plate velocity vectors) considered in the search of the kinematic solution reported in table I. For each plate
boundary (see figs. 3 and 4), the relevant kinematic constraints, along with the related standard deviation o and
the respective values predicted by the related Euler pole (table I), are reported. The differences between predict-
ed and observed values are given in brackets. See text for explanations.

a@ North America — Eurasia

Spreading rates — Mid-Atlantic Ridge

Latitude (°) Longitude (°) Observed + o (mm/a) Predicted (mm/a) Source
86.50 43.00 12+3 10.4 (-1.6) DeMets et al. (1990)
84.90 7.50 133 11.5 (-1.5) =
84.10 00.00 132 11.8 (-1.2) =
83.40 -4.50 15+3 12.1 (-2.9) =
73.70 8.50 174 14.1 (-2.9) =
72.50 3.00 15+4 14.7 (-0.3) =
71.80 -2.50 14+3 15.1 (+1.1) =
69.60 -16.00 17+2 16.1 (-0.9) =
69.30 -16.00 1752 16.2 (-1.3) =
68.50 -18.00 18 +2 16.5 (-1.5) =
67.90 -18.50 18+2 16.6 (-1.4) =
61.60 -27.00 19+2 18.3 (-0.7) =
60.20 -29.10 19+2 18.6 (-0.4) =
44.50 -28.20 25+4 21.2 (-3.8) =
43.80 -28.50 24 £3 21.3 (-2.7) =
43.30 -29.00 23+ 3 21.3 (-1.7) =
42.90 -29.30 255+2 21.4 (-4.1) =
42.70 -29.30 23+2 21.4 (-1.6) =
42.30 -29.30 2352 21.4 (2.1) =
41.70 -29.20 245 %3 21.5 (-3.0) =

Transform azimuths — Mid-Atlantic Ridge

Latitude (°) Longitude (°) Observed + o (°) Predicted (°) Source
80.00 1.00 1255+5 124.7 (-0.8) DeMets et al. (1990)
78.80 5.00 127 = 10 126.8 (-0.2) =
71.30 -9.00 114 3 112.6 (-1.4) =
52.60 -33.20 9593 95.6 (-0.3) =
52.10 -30.90 955=%2 96.8 (1.3) =

@ North America — Nubia

Spreading rates — Mid-Atlantic Ridge

Latitude (°) Longitude (°) Observed + o (mm/a) Predicted (mm/a) Source

29.60 -43.00 23+3 24.3 (+1.3) DeMets et al. (1990)
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Table Ila-i (continued).

Spreading rates — Mid-Atlantic Ridge

Latitude (°) Longitude (°) Observed + o (mm/a) Predicted (mm/a) Source
27.50 -44.20 24 £3 24.7 (+0.7) DeMets et al. (1990)
26.90 -44.50 26+4 24.8 (-1.2) =
26.20 -44.80 22+3 24.9 (+2.9) =
25.70 -45.00 24 4 25.0 (+1.0) =
25.30 -45.40 225+2 25.1 (+2.6) =
25.10 -45.40 245+2 25.1 (+0.6) =
24.50 -46.10 23 x4 25.2 (+2.2) =
24.20 -46.30 245+2 25.2 (+0.7) =
23.00 -45.00 25+4 25.4 (+0.4) =
22.80 -45.00 25+2 25.4 (+0.4) =

Transform azimuths — Mid-Atlantic Ridge

Latitude (°) Longitude (°)

Observed + o (°)

Predicted (°)

Source

23.70 -45.70

98.0 =2

98.9 (+0.9)

DeMets et al. (1990)

Py

c) North America — Morocco

Spreading rates — Mid-Atlantic Ridge

Latitude (°) Longitude (°)

Observed + o (mm/a)

Predicted (mm/a)

Source

36.80 -33.20
36.50 -33.70
36.00 -34.10
35.00 -36.50
34.30 -37.00
31.90 -40.50
30.90 -41.70
30.50 -41.90

2052
22+3
20 +3
21 x4
213
23 +4
23 +4
22+3

20.5 (+0.0)
20.6 (-1.7)
20.8 (+0.8)
21.2 (+0.2)
21.4 (+0.4)
22.2 (-0.8)
22.5(-0.5)
22.6 (+0.6)

DeMets et al. (1990)

Transform azimuths — Mid-Atlantic Ridge

Latitude (°) Longitude (°) Observed + o (°) Predicted (°) Source
35.20 -35.60 1045 £2 102.5 (-2.0) DeMets et al. (1990)
33.70 -38.70 104.5 2 102.4 (-2.1) =
30.00 -42.40 10153 101.9 (+0.4) =

(d)  Arabia - Nubia

Spreading rates — Red Sea

Latitude (°) Longitude (°)

Observed + o (mm/a)

Predicted (mm/a)

Source

25.77 35.73

9.7+1.6

8.8 (-0.9)

Chu and Gordon (1998)

352



Nubia-Eurasia kinematics: an alternative interpretation from Mediterranean and North Atlantic evidence

Table Ila-i (continued).

Latitude (°) Longitude (°) Observed + o (mm/a) Predicted (mm/a) Source
25.36 36.02 10.0 £ 1.6 9.2 (-0.8) Chu and Gordon (1998)
22.22 37.86 13.6 £ 0.8 11.8 (-1.8) =
22.19 37.89 10.8 0.8 11.9 (+1.1) =
22.16 37.91 11.8 0.8 11.9 (+0.1) =
22.13 37.97 12.7 0.8 12.0 (-0.7) =
21.92 37.86 12.4 0.8 12.0 (-0.4) =
20.96 38.19 11.0 0.8 12.7 (+1.7) =
20.94 38.23 11.6 £ 0.8 12.8 (+1.2) =
20.87 38.10 12.6 £ 0.8 12.7 (+0.1) =
20.21 38.29 122 +0.8 13.2 (+1.0) =
20.02 38.42 13.8 0.8 13.4 (-0.4) =
20.00 38.53 12.6 £ 0.8 13.5 (+0.9) =
19.97 38.56 12.0+0.8 13.5 (+1.5) =
19.94 38.61 13.2+0.8 13.5 (+0.3) =
19.77 38.68 13.6 £ 0.8 13.7 (+0.1) =
19.61 38.77 13.8 0.8 13.8 (+0.0) =
19.58 38.81 13.0+0.8 13.8 (+0.8) =
19.55 38.86 147 +£0.8 13.9 (-0.8) =
19.52 38.89 15.0+0.8 13.9 (-1.1) =
19.39 38.95 14.0+0.8 14.0 (+0.0) =
19.36 38.99 14.6 £ 0.8 14.0 (-0.6) =
19.31 39.00 14.8 £0.8 14.1 (-0.7) =
19.28 39.05 15.0+0.8 14.1 (-0.9) =
19.19 39.16 14.8 £0.8 14.2 (-0.6) =
19.16 39.08 152 +0.8 14.2 (-1.0) =
19.06 39.30 152 +0.8 14.4 (-0.8) =
19.02 39.33 15.3 +0.8 14.4 (-0.9) =
18.99 39.37 15.6 £ 0.8 14.5 (-1.1) .
18.95 39.40 14.6 = 0.8 14.9 (+0.3) =
18.92 39.43 154 0.8 14.5 (-0.9) =
18.85 39.48 152 +0.8 14.6 (-0.6) =
18.82 39.53 154 0.8 14.6 (-0.8) =
18.80 39.62 15.0 £ 0.8 14.7 (-0.3) =
18.78 39.55 15.0 £ 0.8 14.7 (-0.3) =
18.74 39.59 152+0.8 14.7 (-0.5) =
18.71 39.62 14.8 £0.8 14.7 (-0.1) =
18.63 39.69 154 0.8 14.8 (-0.6) =
18.55 39.75 152+0.8 14.9 (-0.3) =
18.48 39.78 155+0.8 14.9 (-0.6) =
18.42 39.83 155+0.8 15.0 (-0.5) =
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Table Ila-i (continued).

Latitude (°) Longitude (°) Observed + o (mm/a) Predicted (mm/a) Source
18.35 39.88 16.1 = 0.8 15.1 (-1.0) Chu and Gordon (1998)
18.31 39.79 152 +0.8 15.1 (-0.1) =
18.04 40.04 14.8 £0.8 15.3 (+0.5) =
17.96 40.06 159+0.8 15.4 (-0.5) =

Velocity vectors — Dead Sea fault zone

Zone Latitude Longitude Observed = o Predicted Source
©) @) Azimuth (°) Rate (mm/a) Azimuth (°)Rate (mm/a)
Wadi Araba 30.8 354 15+10 52 143 (-0.7) 6.7 (+1.7) Klinger et al. (2000a,b)
Fault
Yamunneh 34.0 36.0 35510  7.5=1.5 353.0(-2.0) 7.0 (-0.5) Gomez et al. (2003, 2006);
Fault Rukieh ez al. (2005)

(e)  Morocco - Eurasia

Transform azimuths — Gloria Fault

Latitude (°) Longitude (°) Observed + o (°) Predicted (°) Source
36.90 -23.50 257 £ 5 255.3 (-1.7) DeMets et al. (1990)
37.00 -22.60 265+3 260.6 (-4.4) =
37.10 -21.70 265+3 265.9 (+0.9) =
37.10 -20.50 270 =7 272.9 (+2.9) =

Velocity vectors

Zone Latitude Longitude Observed = 0 Predicted Source
©) ©) Azimuth (°) Rate (mm/a) Azimuth (°) Rate (mm/a)
Terceira 38.80 -27.20 45 +20 3+1 61.6 (+16.6) 2.7 (-0.3) Buforn et al. (1988); Kiratzi
Rift and Papazachos (1995)
Gorringe  36.00 -10.50 340 + 20 3+2 3227 (17.3)* 1.0 (-2.0)*  Buforn et al. (2004)
Thrust

@ Nubia — Eurasia

Velocity vectors

Zone Latitude Longitude Inferred from numerical Predicted Source
modelling * o
©) ©) Azimuth (°) Rate (mm/a) Azimuth (°) Rate (mm/a)

South- 45.80 14.80 358 +20 3+£2  350.3(-7.7) 4.9 (+1.9) Mantovani et al. (2001c)
eastern
Alps
Southern  40.50 17.60 7 +20 53 2.8 (-4.2) 52 (+0.2)
Adriatic
Sirte Basin 34.64 20.40 24 + 20 8+4 14.2 (-9.8) 5.7 (-2.3)
4

Levantine  33.77 31.60 27 £ 20 11 = 18.0 (-9.0) 7.2 (-3.8)
Basin
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Table Ila-i (continued).

@ Nubia — Morocco

Velocity vectors — Canary-Transmoroccan Fault Zone

Zone Latitude Longitude Observed = o Predicted Source
©) ©) Azimuth (°) Rate (mm/a) Azimuth (°) Rate (mm/a)

Canary 27.0 -21.0 106 = 20 - 108.2 (+2.2) 1.50 Wysession et al. (1995)
Basin

Canary 29.0 -14.0 120 = 20 - 119.5 (-0.5) 1.70 Feraud et al. (1985);
Islands Day et al. (1999);

Marinoni (2001)

Agadir 30.5 -9.7 70 = 10 - 68.1 (-0.9)* 1.4% Sebrier et al. (2006)
TizinTest 31.0 -8.0 60 = 10 - 61.7 (+1.7)* 1.4% Jacobshagen (1992);

Fault Sebrier et al. (2006)
High Atlas  31.7 -6.5 60 = 10 - 55.8 (-4.2)* 1.4% Brede (1992);

Beauchamp et al. (1999);
Teixell et al. (2003)

Middle 33.0 -5.0 40 = 10 - 48.0 (+8.0)* 1.4*  Deffontaines et al. (1992);
Atlas Gomez et al. (1996, 1998)

(h)  Nubia - Iberia

Velocity vectors — Algeria

Latitude  Longitude Observed = 0 Predicted Source
@) @) Azimuth (°)Rate (mm/a) Azimuth (°) Rate (mm/a)
36.80 3.70 325+ 10 2+ 1 329.6 (+4.6) 1.7 (-0.3) Meghraoui and Doumaz (1996);

Buforn et al. (2004);
Yelles-Chaouche et al. (2006)

@ Iberia — Eurasia

Velocity vectors

Zone Latitude Longitude Observed = 0 Predicted Source
©) ©) Azimuth (°) Rate (mm/a) Azimuth (°)Rate (mm/a)
Portugal 41.0 -7.0 20+ 10 <1 27.5 (+7.5) 0.8 Cabral (1989);

Ribeiro et al. (1996);
Jabaloy et al. (2002)
Pyrenees 43.0 1.0 0+20 <2 7.9 (+7.9) 1.6 Herraiz et al. (2000);

Alasset and Meghraoui
(2005)

(*) Computed by adopting the 33% of the Morocco-Eurasia angular velocity reported in table I.

Our confidence in such constraints is based on gion inferred from a large amount of geological
the fact that the adopted velocity field can quan- and geophysical data. We also impose that the
titatively account for the Quaternary deformation Nubian domain lying in front of the Hellenic and
pattern in the central-eastern Mediterranean re- Cyprus arcs moves NNE ward, as discussed in
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Section 2. This condition is defined by the veloc-
ity vectors located in the Syrte and Levantine
basins (table IIf), taken from the velocity field re-
sulting from numerical modelling (Mantovani
et al., 2001c). Considering the significant uncer-
tainty which may affect these constraints, we as-
sign them a relatively large error (20°).

The relative motion between Nubia and
Arabia is constrained by spreading rates in the
Red Sea (Chu and Gordon, 1998) and by veloc-
ity vectors deduced by seismological and geo-
logical information in two sectors of the Dead
Sea fault system (Wadi Araba and Yammuneh
fault zones; fig. 1). Chu and Gordon’s (1998)
dataset allows for a much more reliable compu-
tation of the Arabia-Nubia Euler poles with re-
spect to the data used by DeMets et al. (1990),
which are all located in Gulf of Aden, now
largely believed to represent the Somalia-Ara-
bia plate boundary (e.g., Fournier et al., 2001).
In fact, in the Dead Sea shear zone the NUVEL-
1 model predicts shortening rates considerably
larger than those observed (e.g., Klinger et al.,
2000a,b; McClusky et al., 2003). The velocity
vectors in the Anatolian-Aegean system shown
in fig. 4 are consistent with the considerations
given in Section 2.1. The motion trends of Ana-
tolia and Aegea are westward and SW ward re-
spectively, as suggested by most authors, while
the rates are compatible with the geological ev-
idence discussed in Section 2.1 (5-10 mm/yr).

To better illustrate the plate kinematics pre-
dicted by the Euler poles given in table I, both
the predicted velocity fields in plate interiors
(red arrows) and the relative velocity at plate
boundaries (blue arrows) are shown in fig. 4.

In our opinion, the kinematic solution here
proposed can help to overcome several major
outstanding problems of the NUVEL-1 Nubia-
Eurasia kinematics:

For instance, the hypothesis that Nubia
has moved NNE ward in the recent history does
not require the very unlikely drastic change of
motion trend, from NE ward to NW ward, which
is instead implied by the Nubia-Eurasia kinemat-
ics provided by global kinematic models (see
e.g., Dewey et al., 1989). A discussion about this
problem is given by Mantovani (2005).

The two-plates configuration adopted by
the NUVEL-1 model cannot account for the oc-
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currence of intense earthquakes in the Trans-
moroccan-Canary fault system, in Portugal and
in the Pyrenean belt. In particular, the major fea-
tures of the Transmoroccan tectonic belt, such as
the occurrence of sinistral strike-slip faulting,
alkaline basaltic volcanism, and strong lithos-
pheric thinning (e.g., Piqué et al., 1998; Seber
et al., 1996; Ramdani, 1998; Teixell et al., 2005;
Fullea et al., 2007) and the seismotectonic fea-
tures in the adjacent Atlantic zone can hardly be
reconciled with the Nubia-Eurasia relative mo-
tion predicted by the NUVEL-1 model.

— The incompatibility between the widely

recognized Adria kinematics and the NUVEL-1
Nubia-Eurasia relative motion cannot be recon-
ciled with the lack of a reliable decoupling zone
between Nubia and Adria (Babbucci et al.,
2004; Argnani, 2006).
The SW-NE relative motion between Nu-
bia and the Anatolian-Aegean system, implied
by the morphological features of the Hellenic
and Cyprus arcs, can be reconciled with a NNW
ward motion of Nubia only if the Plio-Quater-
nary motion rate of the Anatolian-Aegean sys-
tem was much higher than the one of Nubia.
However, such hypothesis is not consistent with
Pliocene-Quaternary geological evidence in that
system.

Furthermore, it must be pointed out that the
kinematic pattern we propose (fig. 4) is compat-
ible with many other features of the Pliocene-
Quaternary deformation pattern observed in the
Mediterranean region, as discussed in previous
papers (Mantovani et al., 1997, 2002, 2006a;
Mantovani, 2005) and supported by the results of
numerical modelling (Mantovani et al., 2001c¢).

On the other hand, it cannot be ignored that
our kinematic solution is significantly different
from the models derived by geodetic data. A
discussion about this possible problem is given
in the next section.

5. Geodetic measurements

A number of attempts at determining the
Nubia-Eurasia relative motion by using space
geodetic data have so far been made (e.g., Sella
et al., 2002; McClusky et al., 2003; Calais et al.,
2003; Kreemer et al., 2003; Nocquet and Calais,
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Fig. 5. Nubia-Eurasia Euler poles derived from geodetic data (black dots numbered from 1 to 6) and respective
velocities (thin arrows with numbers) predicted by such poles at the African GPS sites reported in table Illa. Thick
grey arrows show the residual ITRF2000 velocities (table I1Ia) with respect to the Eurasia absolute pole provided
by Prawirodirdjo and Bock (2004). Poles 1 to 3 are taken from literature, while the poles 4 to 6 are computed in
this work taking into account slightly different data sets with respect to the first 3 poles (see table I1Ib).

2004; Prawirodirdjo and Bock, 2004). The Nu-
bia-Eurasia Euler poles proposed by the above
authors (some of them are given in fig. 5 and
table I1la,b) considerably differ from one anoth-
er and are mostly located south of the NUVEL-
1 pole, implying an even more westward motion
trend of Nubia in the Mediterranean region with
respect to the model here proposed.

We do not have any simple explanation for
the fact that the present-day kinematics inferred
from geodetic data is significantly different from
the long-term kinematic models, the NUVEL-1
and the one here proposed. One could consider
the possibility that such difference is due to a
variation of plate kinematics in the recent evolu-
tion. For instance, Calais ef al. (2003) tentatively
relate the presumed recent deviation and slow-
down of the Nubia-Eurasia convergence to the
increasingly collisional resistance in the Mediter-
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ranean region. However, even if this explanation
cannot be ruled out, it is not easy to believe that
the change of motion trend of Nubia from NNE
to NNW ward has occurred without leaving clear
geological imprints throughout the Mediterra-
nean region (Mantovani, 2005). Even Calais et al.
(2003) admit that neither convincing Mediter-
ranean tectonic evidence nor dynamic causes re-
sponsible of the above change may easily be rec-
ognized. Significant discrepancies between geo-
detic velocities and global kinematic models have
been recognised along other major plate bound-
aries, as the Andes and the Himalaya-Tibet (Yang
and Mian, 2002), but such discrepancies have
been tentatively explained as effects of different
short and long-term mechanical behaviour of the
lithosphere.

In the following, to explore alternative ex-
planations of the short-term/long-term discrep-
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Table IIla,b. Nubia-Eurasia kinematics from geodetic measurements. a) North (u) and east (v) components
of absolute and residual velocity in 7 GPS continuous stations located in Nubia and in the Southern Adriatic
(MATE), shown in fig. 5. Absolute velocities and standard deviations (o), are provided by the Laboratoire de
Recherches en Géodésie (LAREG), whose ITRF2000 solution is available at <http://lareg.ensg.ign.fr>. Resid-
ual velocities are obtained from absolute ones by subtracting Prawirodirdjo and Bock’s (2004) Eurasia absolute
pole (latitude 57.246°N, longitude —99.691°E and angular velocity 0.260°/Myr). b) Nubia-Eurasia Euler poles
(fig. 5) taken from literature (1, 2 and 3) and determined in this work (4, 5 and 6) by the data set reported in a).
All the above Nubia-Eurasia Euler poles have been obtained by difference from the related Nubia and Eurasia
absolute poles (see text for explanations). For each case, the list of continuous GPS stations used to constrain
the Nubia absolute pole is shown. Pole 2 has also been constrained by 1 non-continuous GPS site and 4 sites be-
longing to the DORIS network (e.g., Willis ef al., 2005). The columns «Nubia» and «Eurasia» report basic in-
formation about the absolute Euler poles from which the above Nubia-Eurasia poles derive. N is the number of
geodetic stations used to constrain the respective absolute Euler pole, v=2N-3 is the related number of degrees
of freedom, and y,’ is the reduced y* error (e.g., Kreemer et al., 2003).

(a Station Absolute velocity Residual velocity
Name Lat (°) Long (°) u (mm/yr) o v (mm/yr)+o u (mm/yr) v (mm/yr)
GOUG -40.35 -9.88 18.51 = 3.60 20.23 = 1.89 2.87 1.61
HART (HAR, HARB,
HARK, HRAO) -25.89 27.71 17.86 + 0.41 18.09 = 0.35 543 0.32
MASP (MAS, MAS1) 27.76 -15.63 16.67 = 0.54 16.66 = 0.35 1.11 -4.13
MATE 40.65 16.70 18.09 = 0.36 23.70 = 0.13 4.08 0.69
NKLG 0.35 9.67 17.73 + 1.30 14.88 = 2.39 2.97 -9.47
SUTH -32.38 20.81 18.92 +1.69 16.39 +1.37 5.44 0.05
YKRO 6.83 -5.24 2042 = 1.10 24.82 = 1.10 4.83 0.53
@ Pole Source and Nubian Nubia-Eurasia rotation vector Nubia Eurasia
geodetic stations Lat (°N) Lon (°E) o (°/Myr) N,v x/ N,v x
1 Sella et al. (2002): GOUG, HAR, -18.23  -20.01 0.062 5,7 082 15,27 1.02
HRAO, MAS, SUTH
2 Kreemer et al. (2003): GOUG, MAS, 1.1 -21.3 0.060 8,13 0.54 122,241 1.05
SUTH + MATR (GPS not continuous)+
+ ARMA, DAKA, HELA, LIBA
(DORIS network)
3 Prawirodirdjo and Bock (2004): 20.09 -22.09 0.051 7,11 0.8 18,33 1.1
GOUG, HARB, HARK, HRAO,
MASI1, NKLG, SUTH
4 This work: GOUG, HART, SUTH 3.21 -62.57 0.049 3,3 0.16 as Pole 3
5 This work: GOUG, HART, 7.23 -69.78 0.049 4,5 0.11 as Pole 3
SUTH, YKRO
6 This work: GOUG, HART, -21.76 -5.14 0.099 4,5 1.80 as Pole 3
NKLG, SUTH

Nubia (fig. 5 and table IIla) and that most of
them are located along active deforming bound-
aries of this plate (figs. 1, 2 and 5), as also rec-
ognized by Altamimi et al. (2002) and Sella
et al. (2002). The station of MASP (Mas Palo-
mas, Gran Canaria Island, indicated in literature

ancy in the Mediterranean area, we make some
considerations about the uncertainties that
might affect the presently available geodetic da-
ta in that region. The main source of uncertain-
ty may come from the fact that only few GPS
permanent stations are currently operating in
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as MAS and MASI also) is located along an ac-
tive tectonic belt affected by volcanic and seis-
mic activity, Miocene to Quaternary giant land-
slides and considerable (about 1 cm/yr) vertical
and horizontal ground motion (e.g., Mezcua
et al., 1992; Carracedo et al., 1999; Anguita and
Hernan, 2000; Fernandez et al., 2003; Gonzalez
de Vallejo et al., 2003). The station of GOUG
lies very close to the South Atlantic spreading
ridge. The station of NKLG (Libreville,
Gabon), is located near the Cameroon line,
where recent tectonic and volcanic activity is
recognized (e.g., Suleiman et al., 1993; Ateba
and Ntepe, 1997; Ubangoh et al., 1997; Foster
and Jackson, 1998). No recent seismotectonic
activity is instead recognized in the zone where
the stations of the South African Harte-
beesthoek Observatory (HAR, HARB, HARK,
HRAO and HART) are located. One should al-
so consider that most African stations (all but
HRAO and MASP) have been excluded from
the network of core sites used for defining the
ITRF2000 solution since they do not satisfy
quality criteria adopted for site selection (Al-
tamimi et al., 2002).

In order to check the stability of the Nubia-
Eurasia Euler poles with respect to the set of sta-
tions considered, we have carried out some ex-
periments. The Nubia-Eurasia Euler poles ob-
tained by such experiments (poles 4, 5 and 6,
given in table IIIb and illustrated in fig. 5) are
computed as the difference between the related
Nubia and Eurasia absolute Euler poles, ob-
tained by inverting sets of absolute geodetic ve-
locities in a weighted least-squares approach
which minimizes the parameter x” (e.g., DeMets
et al., 1990). For each Euler pole, the goodness
of fit is measured by the reduced y* error
(xv=x*/v) where v is the number of degrees of
freedom, depending on the number of stations
used in the inversion (e.g., Kreemer et al., 2003).
For the computation of poles 4, 5 and 6 we have
adopted the Eurasia absolute pole provided by
Prawirodirdjo and Bock (2004). The Nubia-
Eurasia Euler poles taken from literature (cases 1
to 3 in table IIIb) derive from Nubia and Eurasia
absolute poles for which complete information
about y,” parameters is available.

The results given in table IIIb and fig. 5
raise doubts about the constraining power of the
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presently available data set in the Nubia plate,
since the parameters of Euler poles show a
strong dependence on the set of stations consid-
ered. In particular, it can be noted that the poles
computed without taking MASP into account
are characterized by locations and angular ve-
locities considerably different from those of the
first three poles and that including the station
NKLG in the data set (pole 6 in table IIIb) pro-
vides a particularly bad fit.

At last, it is worth noting that the kinemat-
ics predicted by the Euler poles 4 and 5 (ob-
tained without using MASP and NKLG) in the
Southern Adriatic is fairly compatible with the
geodetic velocity of MATE (fig. 5). This evi-
dence, and the fact that the y,’ values related to
poles 4 and 5 are much lower than those of
poles 1, 2 and 3 (table I1Ib) may imply that ge-
odetic data could be reconciled with the Nubia-
Eurasia kinematics suggested by Mediterranean
evidence if the most uncertain geodetic vectors,
as MASP and NKLG, are not considered. How-
ever, since recognizing the actual quality and
geodynamic significance of geodetic data is not
so simple, we believe that any attempt to derive
Euler poles from the presently available data set
in Nubia (defined as «geodetically poor» by Al-
tamimi et al., 2002) should be considered with
caution.

6. Conclusions

We argue that current ideas on the recent
(last few Myr) relative motion between Nubia
and Eurasia, generally based on the analysis of
North Atlantic data (e.g., the NUVEL-1 model),
might be not reliable. This hypothesis is sug-
gested by the analysis of the Plio-Quaternary
deformation pattern in the Mediterranean re-
gion, which coherently indicate a NNE ward
Nubia-Eurasia convergence, rather different
from the NNW ward convergence trend provid-
ed by the NUVEL-1 model. The possibility that
NUVEL-1 Nubia-Eurasia kinematics is not re-
liable is also suggested by the fact that the two-
plates configuration adopted by such approach
cannot explain the occurrence of significant
seismotectonic activity in some zones lying in-
side the presumed Nubia and Eurasia plates,
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such as Pyrenees, Portugal and the Transmoroc-
can-Canary fault system. In this paper it is
shown that if a more reliable plate configura-
tion, involving the Iberia and Morocco inter-
vening microplates, is adopted, a kinematic pat-
tern can be identified which accounts, within
the respective errors, for both Mediterranean
and North Atlantic (NUVEL-1) constraints.

Understanding why the Nubia-Eurasia con-
vergence trend indicated by Mediterranean evi-
dence is significantly different from the one in-
ferred by geodetic data is not a simple task. In
our opinion, the present network of permanent
GPS stations in Africa may be still inadequate
to determine Nubia’s kinematics. The main
problem is that no or very few stations are avail-
able in the stable part of Africa. In addition, the
Nubia-Eurasia Euler poles so far proposed in
the literature are considerably influenced by the
set of stations considered. In particular, such
poles are strongly conditioned by the use of the
site (MASP) located at the Canary Island active
tectonic belt, which is recognized as a possible
westward prosecution of the Transmoroccan
fracture zone. To explain the discrepancy be-
tween the Nubia-Eurasia kinematic models ob-
tained by different approaches, one should also
consider the possibility that the Mediterranean
constraints we take into account are not as sig-
nificant as we claim. However we think this is
unlikely, since our point of view is supported by
the major features we describe in this work and
can also provide plausible and coherent expla-
nations for the Mediterranean deformation pat-
tern inferred from a large amount of geological,
geophysical and volcanological evidence (Man-
tovani et al., 1997, 2002, 2006a; Mantovani,
2005). Thus, we think that any conclusion
about the reliability of the Nubia-Eurasia kine-
matics deduced by Mediterranean features
should be drawn only after having considered
the complete framework of evidence and argu-
ments in support of that interpretation.

On the other hand, we think that any attempt
to defend the reliability of the Nubia-Eurasia
kinematics provided by the NUVEL-1 model or
inferred from geodetic data should be accompa-
nied by plausible explanations of how the major
problems we raise in this work can be over-
come. For instance, it does not seem scientifi-
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cally opportune using a Nubia-Eurasia kine-
matic model which predicts no deformation in
zones affected by strong seismicity, needs a de-
coupling between Adria and Nubia not docu-
mented by any significant evidence, and cannot
provide any plausible explanation for the mor-
phology and tectonic setting of the Cyprus Arc
and for the sinistral shear observed at the Trans-
moroccan fault system and for many other fea-
tures (e.g., Mantovani, 2005).
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